If the degrees of all the vertices in a planar graph are 5 or higher, then the smallest possible number of vertices with degree 5 is 12 .

Proof:

Let V, E, and R be the number of vertices, the number of edges, and the number of regions (including the outer region) in the graph, respectively. By Euler's formula, $V-E+R=2$. Without any loss of generality we can assume that the graph is fully triangulated - otherwise we just add edges. Then $E=\frac{3 R}{2}$ because each region has three edges and each edge belongs to two regions. So
$R=\frac{2 E}{3} \Rightarrow V-E+R=V-E+\frac{2 E}{3}=V-\frac{E}{3}=2 \Rightarrow 6 V-2 E=12$. Let d_{v} be the degree of the vertex v. Then $E=\frac{1}{2} \sum_{v} d_{v}$, because d_{v} edges come out of v and each edge connects two vertices. $2 E=\sum_{v} d_{v} \Rightarrow \sum_{v}\left(6-d_{v}\right)=6 V-\sum_{v} d_{v}=6 V-2 E=12$. Since $d_{v} \geq 5$, $6-d_{v} \leq 1$. At least 12 of the addends in $\sum_{v}\left(6-d_{v}\right)$ must be equal to 1 for the sum to be 12 , so at least 12 of the d_{v} must be equal to 5 .

A flattened icosahedron is an example of a graph with 12 vertices of degree 5.

